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1. INTRODUCTION

* Extrinsic, photoconductive semiconductor detectors
cover the infrared spectrum from a few pm up to 250

wm.

* Photoconductors exhibit high responsivity and low noise
equivalent power.

* The Si blocked impurity band (BIB) detector invented

by M. D. Petroff and M. G. Stapelbroek has a number
of advantages over standard bulk photoconductors.
These include:

- smaller detection volume leading to a reduction of
cosmic ray interference

- extended wavelength response because of dopant
wavefunction overlap

- photoconductive gain of unity
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2. Ge BIB

* The success of Si BIB detectors has been a strong
incentive for the development of Ge BIB detectors.

* The advantages of Si BIB detectors stated above should,
in principle, be realizable for Ge BIB detectors.

* If Ge BIB detectors can be made to work out to 250 yum
with high responsivity and sufficiently low dark current,
they could replace stressed Ge:Ga photoconductors.

* Can the dark current be reduced to acceptable levels?
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3. Ge BIB DETECTOR DEVELOPMEN

3.1. Epitaxial Blocking Layer Devices

3.1.1.Ge epitaxy

* Whereas Si epitaxy techniques have been developed to a

very high degree of perfection, Ge epitaxy has been
attempted only on a few occasions.

* Ge chemistry is very different from Si chemistry.

e Ultra-pure Ge compounds [Ge(CHz)4, Ge(C2Hs)4] are

being developed for III-V semiconductor technology.
They may be useful to Ge epitaxy.



Substrate choice and preparation

* We have used a number of different crystals with
various crystallographic orientations in the develop-
ment of Ge epitaxy:

n-type wafers (~1011 cm-3) are used for the electrical

characterization of the epitaxial layers which are
typically p-type because of residual copper contam-
ination (junction isolation).

p-type wafers (~1015 cm-3) are used for I-V compari-
son tests with conventional photoconductors.

p-type wafers (~2 x 1016 cm-3, low compensation)
are used for Ge BIB detectors.

93



* Wafer polishing process:

mechanical planar lapping with alumina slurry.

mechano-chemical polishing with syton containing
H;0,.

brief etch in HNO3:HF (3:1) followed by soak in HF
(1% in H,0O) to remove oxides.

¢ Epitaxy:

first experiments with atmospheric pressure vapor

phase epitaxy (VPE). Disadvantage: high substrate
temperature, H; diluted feed gas (contamination,
diffusion of dopants into the blocking layer).

current experiments are performed with low pressure
VPE. Advantage: low substrate temperature.
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3.1.2.Characterization of epi layers

* Optical micrographs

Variable temperature Hall effect and resistivity

Rutherford backscattering (channeling) spectrometry
(RBS)

Secondary ion spectrometry (SIMS)

Spreading resistance measurements
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ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

(100) Np—N, = 1x10%/cm?
580°C; 5 sccm GeHy,
with H, reduction step,
polycrystalline deposition

(113) Np-N, = 2x10"%/cm3
580°C; Ssccm GeHy,
with H, reduction step,
no growth (etching)

(113) Np=N,=5x10"/cm?
550°C; 10sccm GeHy,

no H, reduction step,

single crystal deposition

0.03 mm

Fig. 6. Optical micrographs of Ge epi layers.

98



18

Hall Effect
10 i | T

SSO0A  +
S50-01

T 171717
Ll L Llill

*

17
10

EGap Ge (700 meV)

¥ 1SR L ALLA)
i 11 111111

16
10

T LB AR ALALS
b
1 1.1 111231

|l

)
—
4
+

¥ T 1T 1TTENy
1 L0 111144

—t

O
F-S
«t

T 1T FPTTFET
1 11 1 10185

Cu-/® (Ey + 44 meV)

—

(@)
—
W

L1 14114t

Concentration (cm—3)

L] T EETTT

[y
(w)
[\V]

¥ VT T TTENT
1 1. Liiill

11
10

T 1 oI
1 11 114111

10 1 1 ] 1
0.0 8.0 16.0 24.0 32.0 :6& 0

1000/T7 K~

10

Fig. 7. Variable temperature Hall effect measurements of a Ge epilayer on
an n-type [113] substrate. The hole freeze-out curves indicate a light
copper contamination. The two curves (+, *) are measurements of

the same sample and demonstrate reproducibility.
99



QE °1

"UOIIBJIJUIIUOD )23 3p Yydiy e Zunedipur 3ul[2uuUeyddp uedjiusdis smoys
uo1daa ,Apnopd,, YL -(9c9#) wyy 1da 39 e jo eapads Juipuueyd gy ‘g Sig

(ABW) AJYEN3 NOI d38311VISM3vE

91 1 96 "0 LL"O LS 0
o ! | I T 0
% 3LvHLSANS o
A (NOI93Y AONOTID) 9E9# 1d3 +
(NOI93Y ¥V3IND) 9E9# 1d3 — |
SR 3
1C
g. H <
¥ —
I-I l s
*#xrAr#r+ =1 0
<€1l> ﬁ#? | 2
_ Ff.. =
. nw#ma% P
+ 4
M

WOONVY

_|000Y

100



10%

L v i saal

Clean #1 W/ Plasma Etch

— — Clean #2 W/ Plasma Etch

- -~ Leak in Reactor During Dep.
No Plasma Etch

(@]
8

L r i el

—
o
s

L 1 2 a1l

Concentration (Atoms/cm?)

ot
o
>

- —

a1l

——--/,
ll|11llljl"l‘lll11l|II1l—llll]l1lllll1|l|

0.0 0.5 1.0 1.5 2.0
Depth (um)

Fig. 9. SIMS of LPVPE Epi Films:
Oxygen Concentration

101



Concentration (Atoms/cm?)

-

—

andh

—r

0 *4
- Clean #1 W/ Plasma Etch
7 — — Clean #2 W/ Plasma Etch
4w 5 3\ ----- Leak in Reoctor During Dep.
No Plasma Etch
0 1.__
0 1.,:
0"
-'lIl1lllll]lllllIllI]l]l]llllT]llI7llTll|
0.0 0.5 1.0 1.5 2.0
Depth (um)

Fig. 10. SIMS of LPVPE Epi Films:
Carbon Concentration

102



3.1.3.Preliminary detector test results

* Responsivity

* Dark current
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Fig. 11. Spreading resistance as a function of depth from the epilayer sur-
face for: (a)an area of epilayer close to the leading edge of the
wafer in II-16 where the growth rate was ~0.06 pmmin-1, and
(b) an area of epilayer farthest from the leading edge of the same
wafer where the growth rate was ~ 0.02 pmmin-1. The slight rise
in resistivity at the very surface is due to the native oxide.
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Fig. 12.
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Responsivity as a function of bias for detectors 13-2 and 13-3 at 2.3
K under reverse bias. The substrate material is moderately doped
(5 x 1015 ¢cm-3). Such material exhibits hopping conduction but
does not have extended wavelength spectral response. Tests were
performed with a narrow band filter at A = 98.9 pm.
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106



10 ~°

1t 111291l

Q-

L1t a1l

1 c) -11

1 11l

13-3

Dark Current
10 —-12
Lt raerd

1 LIRS T T TTTTT0] T T TTTTTI0 T LI LILIRRRS !
10 1072 10° 10 *
Bias (mV)

10 -13

—

Fig. 14. Dark current as a function of bias for detectors 13-2 and 13-3 at
2.3 K under reverse bias.

107



3.2.Ion Implanted BIB Detectors

¢ Concept:

In case pure and structurally perfect epitaxial layers

are hard to produce, we can resort to implantation of
dopants into an ultra-pure crystal.

e Low energy B+-implantation tests:

three B+ energies: 150 keV, 95 keV, 50 keV form
a 0.4 um thick layer with NA = 3.5 x 1016 cm-3,

annealing at 400°C for one hour in argon.
extended wavelength response.

responsivity = 0.5 A/W, dark current < 10-14 A, at
bias = 100 mV and T=2.0K. NEP=4x10-16
W/ vHz.
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* High energy B+-implantation tests:

14 implant energies up to 4 MeV doubly charged
boron ions lead to a 5 um thick layer with NA =
1 x 1016 cm-3,

Variable temperature Hall effect and resistivity mea-

surements indicate full activation of shallow accep-
tor dopant B. No deep levels are detectable after
annealing. Below 15 K, hopping conduction
becomes dominant.

Infrared transmission measurements and device tests
are in progress.
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4. CONCLUSIONS

A LPVPE technique for the low temperature growth of
epitaxial Ge layers has been developed.

Hall effect and resistivity measurements indicate that

the epi layers are lightly p-type due to residual copper
contamination.

First generation Ge BIB detectors made with moderately
doped substrates (5 x 1015 cm-3) exhibit effective
blocking of the hopping current.

First generation Ge BIB detectors exhibit responsivities
around 1 A/W.

Second generation devices using low pressure VPE are
being processed.

Ion implanted active layers are tested.

It is currently not known what temperatures will be

required to reduce the dark current down to levels which
are acceptable for SIRTF applications.
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